Theory and Practice of Cryptography

From Classical to Modern
About this Course

All course materials: http://saweis.net/crypto.shtml

Four Lectures:
1. History and foundations of modern cryptography.
2. Using cryptography in practice and at Google.
4. A special topic in cryptography.
Classic Definition of Cryptography

Kryptósgráfo, or the art of "hidden writing", classically meant hiding the contents or existence of messages from an adversary.

Informally, *encryption* renders the contents of a message unintelligible to anyone not possessing some secret information.

Steganography, or "covered writing", is concerned with hiding the existence of a message -- often in plain sight.
Scytale Transposition Cipher
Caesar Substitution Cipher
Zodiac Cipher
Vigenère Polyalphabetic Substitution

<table>
<thead>
<tr>
<th>Key: GOOGLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plaintext: BUYYOUTUBE</td>
</tr>
<tr>
<td>Ciphertext: HIMEZYZIPK</td>
</tr>
</tbody>
</table>

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A
C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B
D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C
E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D
F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E
G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F
H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G
I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H
J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I
K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J
L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K
M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L
N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M
O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N
P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P
R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q
T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S
U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T
V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U
W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V
X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W
Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y
Rotor-based Polyalphabetic Ciphers

Right rotor advanced one position
Steganography

- Herodotus tattoo and wax tablets
- Invisible ink
- Mic rodots
- "The Finger"
- Prison gang codes
- Low-order bits
Codes

Codes replace a specific piece of plaintext with a predefined code word. Codes are essentially a substitution cipher, but can replace strings of symbols rather than just individual symbols.

Examples:
- "One if by land, two if by sea."
- Beale code
- **Numbers stations**
- ECB Mode
Kerckhoffs' Principle

A cryptosystem should be secure even if everything about it is public knowledge except the secret key.

Do not rely on "security through obscurity".
One-Time Pads

Generate a random key of equal length to your message, then exclusive-or (XOR) the key with your message.

This is information theoretically secure...but:

- "To transmit a large secret message, first transmit a large secret message"

- One time means one time.

- Need to transmit a key per message per recipient.

- Keys are as big as messages.
Problems with Classical Crypto

Weak: Pen and paper, and mechanical cryptosystems became weak in the face of modern computers.

Informal: Constructions were ad hoc. There weren't publicly available security definitions or proofs of security.

Closed: Cryptographic knowledge and technology was primarily only available to military or intelligence agencies.

Key distribution: The number of keys in the system grows quadratically with the number of parties.
Modern Cryptographic Era

- Standardization of cryptographic primitives
- Invention of public key cryptography
- Formalization of security definitions
- Growth of computing and the internet
- Liberalization of cryptographic restrictions
Data Encryption Standard (DES): A strong, standardized 56-bit cipher designed for modern computers.

Originally designed by IBM and called "Lucifer". Tweaked by the NSA and published in 1975.

In 1999, a DES key was brute forced in 24 hours for $100K

Triple DES (3DES): Effectively 112-bit cipher. Still in use.

Advanced Encryption Standard (AES) is modern heir to DES, and was designed by academics in a public competition.

AES supports 128-bit and larger keys.
Key Distribution Problem

- How do Alice and Bob first agree on a shared key?
- What happens if either party is compromised?
- What happens when Carol wants to talk to Alice and Bob?
Diffie-Hellman Key Exchange

Generate a shared secret with a stranger over a public channel.

1. Alice picks a group G, generator g, and a random value x
2. Alice computes $A = g^x$ and sends Bob (G, g, A)
3. Bob picks a random y, computes $B = gy$, and sends Alice B
4. Alice computes $K = B^x = g^{xy}$
5. Bob computes $K = A^y = g^{xy}$

Eve's sees $(G, g, A, B) = (G, g, g^x, g^y)$
How hard is it for her to compute g^{xy}?

Note: "^" is the power operator, not an XOR
Diffie-Hellman Key Exchange

Does this solve the key distribution problem? Not quite..

- Still need to establish \(n^2 \) keys for \(n \) people or conduct interactive key exchange protocols for each message.

- Computation over appropriate groups can be expensive

- Vulnerable to a man in the middle attack
Public Key Encryption

What if you could publish a "public" key that anyone could use to encrypt, but not decrypt messages?

1. A public key cryptosystem consists of (G, E, D).
2. Alice generates a key pair: $G(r) \rightarrow (PK_a, SK_a)$
3. Alice publishes her public key PK_a
4. Bob encrypts a message with her public key: $E(PK_a, m) \rightarrow c$
5. Alice decrypts a ciphertext with her secret key: $D(SK_a, c) \rightarrow m$
Public Key Encryption

Nice properties:
- Only one key per person, not per pair.
- Can communicate with a stranger without agreeing on a key.

Problems with public key cryptography:
- Is this even possible?
- How do you get Alice's public key?
- Why do you trust the ciphertext?
RSA Encryption

Published in 1977 / Cocks 1973

Based on hardness of factoring products of large primes.
1. Setup: $n = pq$, $PK = (e, n)$, $SK = d$, $ed = 1 \mod (p-1)(q-1)$
2. $E(PK, m) = m^e \mod n = c$
3. $D(SK, c) = c^d \mod n = m^{ed} \mod n = m$

Problems?
- Ciphertext is fixed size
- Computation is still relatively expensive.
- Why do you trust the ciphertext has not been modified?
- Not semantically secure (lecture 3)
What about authentication?

- How do we know Alice is Alice?
- How do we know a message originated from Alice?
- How do we know Alice's message was not altered in transit?
Message Authentication Codes

- Alice and Bob share a secret key k.
- Either can sign (or MAC) a message: $\text{Sign}(k, m) \rightarrow \sigma$
- The recipient can verify the signature: $\text{Verify}(k, m, \sigma)$
- Often built from other primitives
- Similar key distribution problems to ciphers
Public Key Signatures

Only you can sign messages, but anyone in the world can verify them. Public-key analog of a MAC.

1. A public key signature scheme consists of (G, Sign, Ver).
2. Alice generates a key pair: \(G(r) \rightarrow (VK_a, SK_a) \)
3. Alice publishes her verifying key \(VK_a \)
4. Alice signs a message: \(\text{Sign}(SK_a, m) \rightarrow \sigma \)
5. Bob verifies a signature with her verifying key: \(\text{Ver}(VK_a, m) \)
Public Key Signatures

- Is a public key signature scheme possible?
- How do we distribute verification keys?
- RSA is fixed size. How do we sign big messages?
Message Digests

- Message digests compress input to fixed length strings.
- No keys involved.
- **One-wayness:** It is hard to find an input that hashes to a pre-specified value.
- **Collision resistance:** Finding any two inputs having the same hash-value is difficult.
- Fixed-length public signature schemes can sign digests instead of the actual message.
Key Distribution: Still a problem

How do you know someone's public key is their own?
- Certificates: A signature on a public key or another certificate

- PKI: A graph of relationships between keys.
 - Certificate authorities
 - A "web-of-trust" social graph

How do we revoke keys?
- Expiration dates

- Certificate Revocation Lists
The Rest of the Course

Exercise Set 1: Posted on http://go/cryptocourse

Lecture 4: A special crypto topic. General audience.