### Modern Crypto 15 Years of Advancement in Cryptography





### **Steve Weis** saweis.net

VILLAGE



# 90s were a good time for crypto

- T-shirts were once munitions...
- Lots of new libraries, primitives, protocols, theory...
- Crypto War I: US export controls are relaxed
- Dotcom boom: Web browsers bring crypto to everyone.



# What have cryptographers been doing since 2000?

# Major Themes of 2000-2015

- Outline of today's talk:
- 1. Crypto becomes ubiquitous
- 2. Breaks in 90s primitives & protocols
- 3. Modern standards mature and new standard emerge
- 4. Ciphertext becomes usable in surprising ways

# Crypto becomes ubiquitous

- 2008: Gmail option to always enable HTTPS https://www.google.com/
- 2010: Gmail defaults to HTTPS **EFF/Tor Project HTTPS Everywhere**
- 2013: Facebook defaults to HTTPS https://www.facebook.com
- 2014: Yahoo Mail uses HTTPS by default
- 2015: "Let's Encrypt" free CA scheduled

# HTTPS by Default

https://us-mg4.mail.yahoo.com



# E2E Encrypted Everywhere

- 2003: Encrypted Enterprise AIM
- 2004: Off-the-Record protocol published
- 2010: TextSecure released
- 2013: Axolotl key ratcheting iMessage encryption\*
- 2014: Signal released









# Mainstream Disk Encryption

- 2003: FileVault to encrypt home directories
- 2004: BitLocker full disk encryption
- 2004: Truecrypt released
- 2011: FileVault 2 with full disk encryption
- 2014: iOS & Android disk encryption Truecrypt suddenly ceases development













- 2002: Tor pre-alpha released
- 2004: Tor paper published 2012: NSA "Tor Stinks" presentation Tor Hidden Services deployed
- 2006: Tor project launched

# for Cat Photos



2008: Tor Browser released

2014: wwwfacebookcorewwwi.onion







# BIT

Image courtesy of Headline Shirts http://www.headlineshirts.net/

2008: Bitcoin paper published

- 2009: Bitcoin block 0
- 2011: Silk Road: Tor HS + Bitcoin
- 2013: Bitcoin price peak Silk Road busted
- 2014: Random Darknet Shopper
- 2015: Bitcoin ETF





### Fall of the Hash Functions

- 2004: Xiaoyun Wang announces MD5 collisions at Crypto Rump Session
- 2005: SHA-1 weakened
- 2008: Researchers forge rogue CA certificates using MD5
- 2013: Flame malware forges Microsoft certificates using MD5 vulnerabilities



### Xiaoyun Wang



### Unknown Pleasures of RC4

- 2001: Mantin & Shamir discover biases in RC4
- 2002: Biases used to attack WEP
- 2013: Plaintext recovery attack against TLS
- 2015: Cloudflare disables RC4
- 2015: 75 hours to recover cookies over HTTPS

Images courtesy of Tony Arcieri: https://github.com/tarcieri/unknownciphers

1987-2013



### Rise of the Branded Vulnerability



- 2011: BEAST exploits CBC vulnerability in TLS 1.0
- 2012: CRIME
- 2013: BREACH Lucky 13
- 2014: Heartbleed POODLE padding oracle attack finally kills SSL 3.0

# "The Factoring Dead"

- 2013: Multiple advancements in solving the discrete log problem, especially Antoine Joux.
- Algorithm is for small characteristic finite fields.
- Improvements could weaken Diffe-Hellman, DSA, ElGamal, & potentially RSA.
- NSA Suite B doesn't mention factoring-based keys



### NSA paid \$10 million to put its backdoor in RSA encryption, according to Reuters report

By Russell Brandom on December 20, 2013 04:54 pm 🛛 Email 🎽 @russellbrandom

- 2004: RSA was allegedly paid \$10M to include Dual\_EC\_DRBG in BSafe product
- 2005: Certicom files patent for backdoor
- 2006: NIST standardizes Dual\_EC\_DRBG
- 2007: Researchers suspect backdoor
- 2013: Snowden leak reveals alleged payments to RSA

|        | Original Message                                            |
|--------|-------------------------------------------------------------|
| Subjec | t: RE: Minding our Ps and Qs in Dual_EC                     |
| From:  | "Don Johnson" < DJohnson@cygnacom.com>                      |
| Date:  | Wed, October 27, 2004 11:42 am                              |
| To:    | "John Kelsey" <john.kelsey@nist.gov></john.kelsey@nist.gov> |
|        |                                                             |
|        |                                                             |
| John,  |                                                             |

P = G. Q is (in essence) the public key for some random private key.

It could also be generated like a(nother) canonical G, but NSA kyboshed this idea, and I was not allowed to publicly discuss it, just in case you may think of going there.

Don B. Johnson





# Block Ciphers Grow Up

- 2000: Rijndael wins AES competition
- 2005: AES cache side-channel attacks GCM mode published
- 2008: GCM included in NSA Suite B
- 2010: Intel releases AES-NI
- 2011: Intel adds PCLMULQDQ



My CPU encrypts AES-GCM at **305 Gbit/s** 



### Trusted Hardware

- 2001: IBM ships TPM 1.1
- 2003: ARM TrustZone
- 2004: TPM 1.2 released
- 2013: Intel SGX

# Better & Faster Hash Functions

- 2007: NIST announces SHA-3 competition
- 2007: Sponge functions published
- 2012: Keccak wins SHA-3 competition
- 2013: Intel SHA Extensions



# Password Hashing Competition

- 1999: bcrypt password hashing
- 2009: scrypt password hash published
- 2014: Password Hashing Competition announced
- 2015: Argon2 wins Password Hashing Competition

# dib & Friends Replace NIST

- 2005: Curve25519 elliptic curve Poly1305 MAC
- 2008: Chacha20 stream cipher
- 2011: NaCL library
- 2013: libsodium portable NaCL library
- 2014: Google supports Chacha20-Poly1305
- 2015: Openssh defaults to Chacha20-Poly1305

### Dan Bernstein







# Post-Quantum Crypto

- What if a large quantum computer is built?
- Broken: RSA, ElGamal, Diffie-Hellman, ECC, etc.
- <u>Survivors</u>: Lattices, multivariate, coding, hashbased, and symmetric crypto
- 2006-2015: <u>PQCrypto.org</u> workshop focused on developing software and standards



Peter Shor



# **Ciphertext Becomes Usable**

### The Big Picture

### Today: Cryptography allows us to use untrusted <u>networks</u> & untrusted <u>storage</u>.

**Tomorrow:** Cryptography will allow us to use untrusted <u>computation</u>.

### 2009: Order-preserving $\bullet$ symmetric encryption

- 2007: Order-preserving encryption
- 2000: Search on encrypted data





### Searchable Encryption

- 2011: CryptDB released
- 2013: Google releases Encrypted **Big Query client support**



- 1982: Yao introduces "secure 2-party computation"
- 2008-2013: Performance & security improvements
- 2013: Dyadic Security founded
- Need to re-garble for each computation

# Bilinear Pairings & Maps

### A bilinear map $e(\cdot, \cdot)$ takes a pair of inputs and map it to a single output with a useful property: $e(g^a, g^b) = e(g, g)^{ab}$

2002-2015: Voltage Security (acquired by HP)

2001: Boneh & Franklin, Identity-Based Encryption

**IBE**: Encrypt("Steve", message) —> ciphertext **MasterKeyServer**("Steve") —> Decryption Key

Traditional: Directory("Steve") —> Public Key: "mQINBFUQW0.." **Encrypt**("mQINBFUQW0...", message) —> ciphertext

# Identity Based Encryption





# Pairings-Based Everything

- 2002: Hierarchical IBE
- 2003: Aggregate signatures; Ring signatures
- 2004: Short signatures; Group signatures
- 2005: Broadcast encryption
- 2006: Attribute-based encryption









Craig Gentry

### Fully Homomorphic Encryption E(Query) Search Engine ←----The Web E(Search results) You

- Example homomorphism: E(A) + E(B) = E(A+B)
- Partially homomorphic (RSA, ElGamal, Paillier): Add (+) or multiply  $(\cdot)$ , but not both at once.
- 2009: Gentry's Fully Homomorphic Encryption





- Traditional public-key encryption: All or nothing
- Functional encryption: Reveal only F(m)
- 2005: "Fuzzy Identity-Based Encryption"
- 2011-2013: Formal definitions & constructions

# Functional Encryption

MailIsSpam(email)?Server(No other info)

### Multilinear Maps

### Like bilinear maps, but with an arbitrary degree: $e(g^a, g^b, g^c) = e(g, g, g)^{abc}$ $e(g^{a_1}, g^{a_2}, \dots, g^{a_n}) = e(g, g, g)^{\prod a_i}$

### Software Obfuscation



- 2013: Software obfuscation
- Based on multilinear maps
- Example: Let P(m) := AES(key, m)
  Obfuscate(P( · )) is public-key crypto.

Run Obfuscated(P( $\cdot$ )) P(x), P(y), ...

The Next 15 Years?

# Welcome to Crypto War II

### The New Mork Times Security Experts Oppose Government Access to Encrypted Communication

### The Washington Post

The Post's View

### Putting the digital keys to unlock data out of reach of authorities

Last October in this space, we urged Apple and Google, paragons of innovation, to create a kind of secure golden key that could unlock encrypted devices, under a court order, when needed. The tech sector does not seem so inclined.

### The Daily Dot

The rise of the new Crypto War

### *"Encryption threatens to lead all of us to a very dark place"* James Comey FBI director

The Washington Post Compromise needed on smartphone encryption



### Predictions

- We'll be able to safely compute on untrusted computers.
- End-to-end encryption will be universal, but not without a fight.
- There will be surprising breaks in crypto we use today.
- We'll see more CPU & architecture hardware security features.
- A quantum computer will factor 35 with Shor's algorithm.

### Thanks & Resources

Thanks: Kevin Lewi, Tony Arcieri, Susan Hohenberger, abhi shelat, JP Aumasson, Seny Kamara, Andrew Miller, Elaine Shi, Ling Ren, Paul Grubbs, Alexandre Anzala-Yamajako, Xiaoyong Bai, Abhradeep Guha Thakurta

- Dan Boneh's Coursera Cryptography course: https://www.coursera.org/course/crypto
- Crypto101 Introductory course: <u>https://www.crypto101.io/</u>
- Matasano Crypto Challenges: <u>http://cryptopals.com/</u>
- Modern Crypto mailing lists: <u>https://moderncrypto.org/</u>

